If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+192=0
a = -16; b = 0; c = +192;
Δ = b2-4ac
Δ = 02-4·(-16)·192
Δ = 12288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12288}=\sqrt{4096*3}=\sqrt{4096}*\sqrt{3}=64\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{3}}{2*-16}=\frac{0-64\sqrt{3}}{-32} =-\frac{64\sqrt{3}}{-32} =-\frac{2\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{3}}{2*-16}=\frac{0+64\sqrt{3}}{-32} =\frac{64\sqrt{3}}{-32} =\frac{2\sqrt{3}}{-1} $
| 77=3j+26 | | 15(6-b)=+75 | | 2x-10=6x+50 | | 67x-56=32 | | X-3x+-3=x+6 | | (x/4)-1=2 | | y+25/5=9 | | 6+66x=3x+30 | | 45=1/2h(4+5) | | g/4-5=1 | | 4.5x-27=15 | | 21+1.50h=11+2.75h | | v/3+8=11 | | -2=3x=-3+8x | | 60=4(x+8 | | -20/x+2=-10/x | | 6=24m | | 8(r-81)=71 | | 48(2x−1)=8(x+5)+2x | | 2(3-w)=w+9 | | (x)=321 | | 4g+13=2(g-1)-3(7-2g) | | 81=15+2h | | 7=-3+u/5 | | 6(10×7x)=228 | | 7x=5=10(x-7)-3x | | y+5/3=7 | | 3y+6=6y-12 | | 6.5x-4+x-1.4=1 | | n/9+10.36=25.26 | | 13=m/4+12 | | 11/6=n7/9 |